Fine Root Abundance and Dynamics of Stone Pine (Pinus cembra) at the Alpine Treeline Is Not Impaired by Self-shading
نویسندگان
چکیده
Low temperatures are crucial for the formation of the alpine treeline worldwide. Since soil temperature in the shade of tree canopies is lower than in open sites, it was assumed that self-shading may impair the trees' root growth performance. While experiments with tree saplings demonstrate root growth impairment at soil temperatures below 5-7°C, field studies exploring the soil temperature - root growth relationship at the treeline are missing. We recorded soil temperature and fine root abundance and dynamics in shaded and sun-exposed areas under canopies of isolated Pinus cembra trees at the alpine treeline. In contrast to the mentioned assumption, we found more fine root biomass and higher fine root growth in colder than in warmer soil areas. Moreover, colder areas showed higher fine root turnover and thus lower root lifespan than warmer places. We conclude that P. cembra balances enhanced fine root mortality in cold soils with higher fine root activity and by maintaining higher fine root biomass, most likely as a response to shortage in soil resource supply. The results from our study highlight the importance of in situ measurements on mature trees to understand the fine root response and carbon allocation pattern to the thermal growth conditions at the alpine treeline.
منابع مشابه
Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions
On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be majo...
متن کاملCarbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter.
Winter CO(2) gas exchange of the last three flushes of cembran pine (Pinus cembra L.) was studied under ambient conditions at the alpine timberline, an ecotone with strong seasonal changes in climate. During the coldest months of the year, December to March, gas exchange was almost completely suppressed and even the highest irradiances and temperatures did not cause a significant increase in ne...
متن کاملWinter at the alpine timberline. Why does embolism occur in norway spruce but not in stone pine?
Conifers growing at the alpine timberline are exposed to frost drought and freeze-thaw cycles during winter-stress factors known to induce embolism in tree xylem. The two dominant species of the European Central Alps timberline were studied: Norway spruce (Picea abies [L.] Karst) and stone pine (Pinus cembra), which usually reaches higher altitudes. We hypothesized to find embolism only at the ...
متن کاملStable Water Use Efficiency under Climate Change of Three Sympatric Conifer Species at the Alpine Treeline
The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies, and Larix decidua trees from 1975 to 2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ b...
متن کاملMineral Analysis of Pine Nuts (Pinus spp.) Grown in New Zealand
Mineral analysis of seven Pinus species grown in different regions of New Zealand; Armand pine (Pinus armandii Franch), Swiss stone pine (Pinus cembra L.), Mexican pinyon (Pinus cembroides Zucc. var. bicolor Little), Coulter pine (Pinus coulteri D. Don), Johann's pine (Pinus johannis M.F. Robert), Italian stone pine (Pinus pinea L.) and Torrey pine (Pinus torreyana Parry ex Carrière), was carri...
متن کامل